Coupling Spatial Models: Autocrine Chemotaxis
Persistent Identifier
Use this permanent link to cite or share this Morpheus model:
Introduction
This example models a cellular Potts model for autocrine chemotaxis by coupling a CPM to a diffusive chemoattractant.
Description
It exemplifies the combination of a CPM
with a PDE
through the chemotaxis towards a diffusive chemoattractant produced by cells. The CellType
has a Property
$p$ (production rate) which is positive within biological cells, and is zero in the medium
cell type. The symbol $p$ can than be used in the PDE
as the production term for species or Layer
$U$. In this way, $U$ is produced in each lattice node that is occupied by a cell, and is not produced outside of cells. At the same time, cells perform Chemotaxis
towards the chemoattractant $U$.
The simulation is visualized using some advanced Gnuplotter
feature. Cells are superimposed
on the PDE and appear as transparent domains (see opacity
). Moreover, the concentration gradient of the PDE is emphasized by the use of isolines
that draws contours as positions with equal concentration.
Model
Examples
→ Multiscale
→ AutocrineChemotaxis.xml
or
AutocrineChemotaxis.xml
XML Preview
<MorpheusModel version="3">
<Description>
<Title>Example-AutocrineChemotaxis</Title>
<Details></Details>
</Description>
<Global>
<Field symbol="U" value="0" name="chemoattractant">
<Diffusion rate="0.1"/>
</Field>
<System solver="euler" time-step="10.0">
<DiffEqn symbol-ref="U">
<Expression>p - d*U</Expression>
</DiffEqn>
<Constant symbol="d" value="0.01" name="degradation U"/>
</System>
<Constant symbol="cell_density" value="0.003"/>
</Global>
<Space>
<Lattice class="square">
<Size symbol="size" value="200 200 0"/>
<BoundaryConditions>
<Condition boundary="x" type="periodic"/>
<Condition boundary="y" type="periodic"/>
</BoundaryConditions>
<NodeLength value="1.0"/>
<Neighborhood>
<Distance>2.5</Distance>
</Neighborhood>
</Lattice>
<SpaceSymbol symbol="space"/>
</Space>
<Time>
<StartTime value="0"/>
<StopTime value="2.5e4"/>
<SaveInterval value="0"/>
<RandomSeed value="0"/>
<TimeSymbol symbol="time"/>
</Time>
<CellTypes>
<CellType class="biological" name="cells">
<!-- <Disabled>
<Property symbol="cell" value="1.0"/>
</Disabled>
-->
<Property symbol="c" value="100.0" name="chemotactic strength"/>
<Property symbol="p" value="0.01" name="production chemoattractant"/>
<Property symbol="neighbors" value="0" name="number of neighboring cells"/>
<VolumeConstraint target="60" strength="1"/>
<SurfaceConstraint target="0.85" mode="aspherity" strength="1"/>
<Chemotaxis field="U" contact-inhibition="false" strength="c" retraction="true"/>
<NeighborhoodReporter>
<Input scaling="cell" value="cell.type == celltype.cells.id"/>
<Output symbol-ref="neighbors" mapping="sum"/>
</NeighborhoodReporter>
</CellType>
<CellType class="medium" name="medium">
<Constant symbol="neighbors" value="0.0"/>
<Constant symbol="p" value="0.0" name="production"/>
</CellType>
</CellTypes>
<CPM>
<Interaction default="0.0">
<Contact type1="cells" type2="medium" value="-10"/>
<Contact type1="cells" type2="cells" value="-20"/>
</Interaction>
<MonteCarloSampler stepper="edgelist">
<MCSDuration value="1.0"/>
<Neighborhood>
<Order>2</Order>
</Neighborhood>
<MetropolisKinetics temperature="10.0"/>
</MonteCarloSampler>
<ShapeSurface scaling="norm">
<Neighborhood>
<Distance>2.5</Distance>
</Neighborhood>
</ShapeSurface>
</CPM>
<CellPopulations>
<Population size="0" type="cells">
<InitRectangle mode="regular" number-of-cells="cell_density * size.x * size.y">
<Dimensions size="size.x, size.y, 0" origin="0.0, 0.0, 0.0"/>
</InitRectangle>
</Population>
</CellPopulations>
<Analysis>
<Gnuplotter time-step="500" decorate="false">
<Terminal opacity="0.55" persist="true" name="png"/>
<Plot>
<Field symbol-ref="U" isolines="5" min="0.0" surface="true"/>
<Cells>
<ColorMap>
<Color value="2.0" color="gray"/>
<Color value="0" color="gray"/>
</ColorMap>
</Cells>
</Plot>
</Gnuplotter>
<DependencyGraph format="svg" exclude-plugins="Gnuplotter"/>
</Analysis>
</MorpheusModel>
Downloads
Files associated with this model: