Game of Life: Cellular Automata
Persistent Identifier
Use this permanent link to cite or share this Morpheus model:
Introduction
This example models probably the best-known classic cellular automaton (CA) model: Conway’s Game of Life. It shows an alternative use of System
for synchronous updating of Equations
.
Description
In this model, the lattice is filled with cells of size $1$. Each cell counts the number of neighboring cells that are ‘alive’ and acts accordingly. The rules that make up the Game of Life are implemented in a System
of Equations
in which all Equations
are updated synchronously.
Things to try
- Change the
Neighborhood
from a Moore (2nd order) to von Neumann (1st order).
Model
Examples
→ Miscellaneous
→ GameOfLife.xml
or
GameOfLife.xml
XML Preview
<MorpheusModel version="3">
<Description>Conway's Game of Life
---------------------
Classical Cellular Automaton with synchronized updates.
Rules:
- If alive, die when less than 2 live neighbors
- If alive, survive when 2 or 3 live neighbors (no change)
- If alive, die when more than 3 live neighbors
- If dead, become alive when exactly 3 live neighbors
<Title>Example-GameOfLife</Title>
<Details>Simulates Conway's cellular automata model "Game of Life" by
1. summing the states of neighboring cells with NeighborhoodReporter
2. based on this sum, setting the cell state using a System of (synchronously updated) Rules.</Details>
</Description>
<Global>
<Constant symbol="s" value="0"/>
</Global>
<Space>
<Lattice class="square">
<Size symbol="size" value="50 50 0"/>
<BoundaryConditions>
<Condition boundary="x" type="periodic"/>
<Condition boundary="y" type="periodic"/>
</BoundaryConditions>
<Neighborhood>
<Order>2</Order>
</Neighborhood>
</Lattice>
<SpaceSymbol symbol="space"/>
</Space>
<Time>
<StartTime value="0"/>
<StopTime value="500"/>
<SaveInterval value="0"/>
<TimeSymbol symbol="time"/>
</Time>
<CellTypes>
<CellType class="biological" name="cell">
<Property symbol="s" value="0.0" name="State_Living"/>
<Property symbol="sum" value="0.0" name="Sum_Neighbors"/>
<System solver="euler" time-step="1.0" name="Rules of life">
<Rule symbol-ref="s">
<Expression>if((s == 1 and sum < 2), 0,
if((s == 1 and sum > 3), 0,
if((s == 0 and sum == 3), 1, s)
)
)
</Expression>
</Rule>
</System>
<NeighborhoodReporter>
<Input scaling="cell" value="s"/>
<Output symbol-ref="sum" mapping="sum"/>
</NeighborhoodReporter>
</CellType>
</CellTypes>
<CellPopulations>
<Population size="0" type="cell">
<InitProperty symbol-ref="s">
<Expression>if(rand_uni(0,1) > 0.75, 1, 0)</Expression>
</InitProperty>
<InitCellLattice/>
</Population>
</CellPopulations>
<Analysis>
<Gnuplotter time-step="20" decorate="false">
<Terminal name="png"/>
<Plot>
<Cells value="s">
<ColorMap>
<Color value="1" color="black"/>
<Color value="0.0" color="white"/>
</ColorMap>
</Cells>
</Plot>
</Gnuplotter>
</Analysis>
</MorpheusModel>
Downloads
Files associated with this model: