Schnakenberg System

Persistent Identifier

Use this permanent link to cite or share this Morpheus model:

Creating patterns using the Schnakenberg reaction-diffusion system

Introduction

We use the Schnakenberg system to generate patterns using a pair of reaction-diffusion (RD) equations, build up from 1D to 2D and explore parameter dependence.

Description

We run the Schnakenberg system of PDEs in 1D with no-flux BoundaryConditions from initial profile of noise.

Results

The final pattern (at $t = 500$) in the 1D Schnakenberg system.
The final pattern (at $t = 500$) in the 1D Schnakenberg system.
A time sequence of pattern formation in the 1D Schnakenberg system, the simulation starts with random initial conditions and proceeds to form a series of peaks.
A time sequence of pattern formation in the 1D Schnakenberg system, the simulation starts with random initial conditions and proceeds to form a series of peaks.
Top: a time sequence of the Schnakenberg RD system equation. Stripes are initialized, merged and sharpened due to the pattern-forming system; produced by [`Schnakenberg2Da.xml`](#downloads). Bottom: The same RD system but with random noise close to the HSS as initial conditions. A pattern of spots emerges over time, produced with [`Schnakenberg2Db.xml`](#downloads).
Top: a time sequence of the Schnakenberg RD system equation. Stripes are initialized, merged and sharpened due to the pattern-forming system; produced by Schnakenberg2Da.xml. Bottom: The same RD system but with random noise close to the HSS as initial conditions. A pattern of spots emerges over time, produced with Schnakenberg2Db.xml.
A variety of patterns formed by the Schnakenberg RD system with noisy initial conditions but with various values of the time-scale parameter $\gamma$. In each case, the system was integrated until $t = 1000$ using the Morpheus file [`Schnakenberg2Db.xml`](#downloads).
A variety of patterns formed by the Schnakenberg RD system with noisy initial conditions but with various values of the time-scale parameter $\gamma$. In each case, the system was integrated until $t = 1000$ using the Morpheus file Schnakenberg2Db.xml.
Simulations of the Schnakenberg system on different sized irregular domains with `noflux` `BoundaryCondition`s. Produced with Morpheus file [`Schnakenberg2Dshape.xml`](#downloads).
Simulations of the Schnakenberg system on different sized irregular domains with noflux BoundaryConditions. Produced with Morpheus file Schnakenberg2Dshape.xml.
The model Schnakenberg2Dshape.xml also requires the separate files picture1.tiff, picture2.tiff and picture3.tiff.

Model

Get this model via:

  • Morpheus-Link or
  •  Download: SchnakenbergRD1D_main.xml
  • XML Preview

    <MorpheusModel version="4">
        <Description>
            <Title>Schnakenberg RD System 1D</Title>
            <Details>Full title:		Schnakenberg System
    Authors:		L. Edelstein-Keshet
    Contributors:	Y. Xiao
    Date:		04.06.2022
    Software:		Morpheus (open-source). Download from https://morpheus.gitlab.io
    Model ID:		https://identifiers.org/morpheus/M2002
    File type:		Main model
    Reference:		L. Edelstein-Keshet: Mathematical Models in Cell Biology
    Comment:		Patterns formed by the Schnakenberg reaction-diffusion system. u is the activator and v is the inhibitor. gamma sets the time scale of the kinetics relative to the rates of diffusion. Modified from the Morpheus example Example-ActivatorInhibitor-2D (https://identifiers.org/morpheus/M0012).</Details>
        </Description>
        <Global>
            <Field symbol="u" name="activator" value="2+0.5*rand_norm(1,0.5)">
                <Diffusion rate="0.01"/>
            </Field>
            <Field symbol="v" name="inhibitor" value="1.0">
                <Diffusion rate="1"/>
            </Field>
            <Field symbol="v_5" name="5Xinhibitor" value="5">
                <Diffusion rate="0"/>
                <Annotation>v_5 is defined for plotting purposes, so that v shows up well on the plot of u.</Annotation>
            </Field>
            <System time-step="0.1" name="Schnakenberg" solver="Runge-Kutta [fixed, O(4)]">
                <Constant symbol="gamma" value="0.1"/>
                <Constant symbol="a" value="0.2"/>
                <Constant symbol="b" value="2.0"/>
                <DiffEqn symbol-ref="u">
                    <Expression>gamma*(a-u+v*(u^2))</Expression>
                </DiffEqn>
                <DiffEqn symbol-ref="v">
                    <Expression>gamma*(b-v*(u^2))</Expression>
                </DiffEqn>
                <Rule symbol-ref="v_5">
                    <Expression>5*v</Expression>
                </Rule>
            </System>
        </Global>
        <Space>
            <Lattice class="linear">
                <Size symbol="size" value="150, 0, 0"/>
                <NodeLength value="0.2"/>
                <BoundaryConditions>
                    <Condition type="noflux" boundary="x"/>
                    <Condition type="noflux" boundary="-x"/>
                </BoundaryConditions>
                <Neighborhood>
                    <Order>1</Order>
                </Neighborhood>
            </Lattice>
            <SpaceSymbol symbol="space"/>
        </Space>
        <Time>
            <StartTime value="0"/>
            <StopTime value="500"/>
            <SaveInterval value="0"/>
            <TimeSymbol symbol="time"/>
        </Time>
        <Analysis>
            <Logger time-step="50">
                <Input>
                    <Symbol symbol-ref="u"/>
                </Input>
                <Output>
                    <TextOutput file-format="csv"/>
                </Output>
                <Plots>
                    <Plot time-step="50">
                        <Style line-width="3.0" style="lines"/>
                        <Terminal terminal="png"/>
                        <X-axis>
                            <Symbol symbol-ref="space.x"/>
                        </X-axis>
                        <Y-axis minimum="0" maximum="6">
                            <Symbol symbol-ref="u"/>
                            <!--    <Disabled>
            <Symbol symbol-ref="v_5"/>
        </Disabled>
    -->
                        </Y-axis>
                        <!--    <Disabled>
            <Range>
                <Disabled>
                    <Data/>
                </Disabled>
                <Disabled>
                    <Time mode="current"/>
                </Disabled>
            </Range>
        </Disabled>
    -->
                        <Color-bar reverse-palette="true">
                            <Symbol symbol-ref="time"/>
                        </Color-bar>
                    </Plot>
                </Plots>
            </Logger>
            <Logger time-step="10">
                <Input>
                    <Symbol symbol-ref="u"/>
                </Input>
                <Output>
                    <TextOutput file-format="matrix"/>
                </Output>
                <Plots>
                    <SurfacePlot time-step="10">
                        <Color-bar>
                            <Symbol symbol-ref="u"/>
                        </Color-bar>
                        <Terminal terminal="png"/>
                    </SurfacePlot>
                </Plots>
            </Logger>
            <ModelGraph format="svg" reduced="false" include-tags="#untagged"/>
        </Analysis>
    </MorpheusModel>
    
    

    Model Graph
    Model Graph

    Downloads

    Files associated with this model:

    Previous
    Next