Wave-Pinning
Persistent Identifier
Use this permanent link to cite or share this Morpheus model:
Spatial distribution of GTPase activity
Introduction
The actin cytoskeleton is regulated by a set of proteins called Small GTPases. The spatial distribution of GTPase activity changes on a timescale of seconds in rapidly moving cells like white blood cells (neutrophils). Here, we generalize a well-mixed GTPase model system to include spatial distribution.
In this context, we investigate the influence of the conservation of the total GTPase and discuss the different behaviors that occur in various domains such as
- traveling waves for a constant pool of inactive GTPase in 1D,
- stalling wave (wave-pinning) for constant total GTPase in 1D,
- stalling wave in a 2D rectangular domain,
- stalling wave in a 2D oval and irregular domain,
- effects of edge curvature on wave-pinning behavior in 2D domains.
Description
Consider the equations depicting a GTPase model, choosing $u$ as it’s active and $v$ as the inactive form:
$$\begin{align} \frac{\partial u}{\partial t} &= (b + \gamma \frac{u^n}{1+u^n})v - u + D_u\Delta u \\ \frac{\partial v}{\partial t} &= - (b + \gamma \frac{u^n}{1+u^n})v + u + D_v\Delta v \\ \end{align}$$
Results
In the simulation shown in the figure above, the system quickly forms hotspots at the two opposite poles of the domain. These persist for a long time. One peak eventually wins and the other disappears.
Wavepinning2DOvalDomain.xml
also requires the separate file Rodlarger.tiff
.
Wavepinningin2DIregDomain.xml
also requires the separate file domainLarge.tiff
.
In the figure above, produced with the Morpheus file Wavepinningin2DIregDomain.xml
, the intial dynamics quickly set up a few ‘hotspots’ that gradually merge and/or attach to the domain boundary. On a much slower time-scale, the high activity zones gradually evolve to minimize their interface length. The shape of the domain means that hotspots get ‘trapped’ in convex regions.
Model
NotWavepinning_main.xml
XML Preview
<MorpheusModel version="4">
<Description>
<Title>NotWavepinning</Title>
<Details>Full title: Wave-Pinning
Authors: L. Edelstein-Keshet
Contributors: Y. Xiao
Date: 22.06.2022
Software: Morpheus (open-source). Download from https://morpheus.gitlab.io
Model ID: https://identifiers.org/morpheus/M2011
File type: Main model
Reference: L. Edelstein-Keshet: Mathematical Models in Cell Biology
Comment: Single GTPase model but with constant inactive GTPase. This simulation demonstrates that when there is no conservation of total (active plus inactive) GTPase, then there is no wave-pinning. The wave of activity takes over the entire domain. Credit: Lutz Brusch, for an earlier version of this code for the wave-pinning model with conservation.</Details>
</Description>
<Global>
<Constant symbol="L" value="dx*size.x"/>
<Function symbol="x">
<Expression>dx*space.x</Expression>
</Function>
<Field symbol="a" name="active GTPase" value="2*exp(-x^2)">
<Diffusion rate="0.1"/>
</Field>
<Field symbol="i" name="inactive GTPase" value="2">
<Diffusion rate="10"/>
</Field>
<System solver="Dormand-Prince [adaptive, O(5)]">
<DiffEqn symbol-ref="a">
<Expression> i*(b+gamma*a^n/(1+a^n))- a </Expression>
</DiffEqn>
<DiffEqn symbol-ref="i">
<Expression>0</Expression>
</DiffEqn>
<Constant symbol="gamma" name="feedback activation parameter" value="1"/>
<Constant symbol="n" value="2"/>
<Function symbol="b" name="basal activation rate">
<Expression>0.067</Expression>
</Function>
</System>
</Global>
<Space>
<Lattice class="linear">
<Size symbol="size" value="100, 0, 0"/>
<BoundaryConditions>
<Condition type="noflux" boundary="x"/>
<Condition type="noflux" boundary="-x"/>
</BoundaryConditions>
<NodeLength symbol="dx" value="0.1"/>
<Neighborhood>
<Order>1</Order>
</Neighborhood>
</Lattice>
<SpaceSymbol symbol="space"/>
</Space>
<Time>
<StartTime value="0"/>
<StopTime value="100"/>
<TimeSymbol symbol="t" name="time"/>
</Time>
<Analysis>
<Logger time-step="1">
<Input>
<Symbol symbol-ref="a"/>
<Symbol symbol-ref="i"/>
<Symbol symbol-ref="L"/>
</Input>
<Output>
<TextOutput/>
</Output>
<Plots>
<Plot time-step="5" title="Spatial profiles">
<Style decorate="true" line-width="3.0" style="lines"/>
<Terminal terminal="png"/>
<X-axis>
<Symbol symbol-ref="x"/>
</X-axis>
<Y-axis maximum="2.5" minimum="0">
<Symbol symbol-ref="a"/>
<Symbol symbol-ref="i"/>
</Y-axis>
<Range>
<Time mode="current"/>
</Range>
</Plot>
<Plot time-step="-1" title="Time-space plot">
<Style style="points"/>
<Terminal terminal="png"/>
<X-axis>
<Symbol symbol-ref="space.x"/>
</X-axis>
<Y-axis>
<Symbol symbol-ref="t"/>
</Y-axis>
<Color-bar>
<Symbol symbol-ref="a"/>
</Color-bar>
</Plot>
</Plots>
</Logger>
<ModelGraph format="svg" reduced="false" include-tags="#untagged"/>
</Analysis>
</MorpheusModel>
Downloads
Files associated with this model:
1GTPase1PDE1DnoCons.png
2PDE1GTPase1D_WP.png
domainLarge.tiff
M2011_wave-pinning_model-graph.svg
M2011_wave-pinning_movie_NotWavepinning_main.mp4
M2011_wave-pinning_movie_WavePinning2PDEsConservedTotal1D.mp4
M2011_wave-pinning_movie_Wavepinningin2D.mp4
M2011_wave-pinning_movie_Wavepinningin2DIregDomain.mp4
M2011_wave-pinning_movie_Wavepinningin2DOvalDomain.mp4
NotWavepinning_main.xml
Rodlarger.tiff
WavePinning2PDEsConservedTotal1D.xml
Wavepinningin2D.xml
Wavepinningin2DIregDomain.xml
Wavepinningin2DOvalDomain.xml
WP_2D_Oval.png
WP_in_2DMorpheus.png
WPIrreg2DDomain.png