Well-mixed Actin Waves
Persistent Identifier
Use this permanent link to cite or share this Morpheus model:
ODEs for GTPase interacting with F-actin
Introduction
Here, we explore the time behavior of a well-mixed GTPase model with negative feedback from F-actin to the GTPase.
Description
We assume that GTPase ($G$) leads to actin assembly, and that F-actin, denoted by the variable ($F$), leads to GTPase inactivation:
$$\begin{align} \frac{\mathrm dG}{\mathrm dt} &= (b + \gamma \frac{G^n}{1 + G^n})G_i - G(\eta + sF) \\ \frac{\mathrm dF}{\mathrm dt} &= \epsilon(k_nG - k_sF) \\ \end{align}$$
Results
The model illustrates that cycling can ocurr in a bistable system with some negative feedback as shown in the figure below.
Model
wellmixedactinwaves.xml
XML Preview
<MorpheusModel version="4">
<Description>
<Title>Actin Waves - well-mixed</Title>
<Details>Full title: Well-mixed Actin Waves
Authors: L. Edelstein-Keshet
Contributors: Y. Xiao
Date: 23.06.2022
Software: Morpheus (open-source). Download from https://morpheus.gitlab.io
Model ID: https://identifiers.org/morpheus/M2012
Reference: L. Edelstein-Keshet: Mathematical Models in Cell Biology
Comment: ODEs for GTPase interacting with F-actin. Illustrates that cycling can ocurr in a bistable system with some negative feedback. The GTPase equations in well-mixed form can be written in terms of the active GTPase and the amount (total - active) of the inactive GTPase. Here, a = active GTPase, F_a = F-actin concentration. Everything is well-mixed and two ODEs are solved for these two variables.</Details>
</Description>
<Global>
<!--
Define the variables and indicate the method used to integrate the ODEs
-->
<Variable symbol="a" value="2.2"/>
<Variable symbol="F_a" value="1.3"/>
<System time-step="0.1" solver="Runge-Kutta [fixed, O(4)]">
<!--
Define a bunch of constants that appear in the ODEs
-->
<Constant symbol="b" name="basal activation rate" value="0.067"/>
<Constant symbol="gamma" name="feedback rate" value="2.0"/>
<Constant symbol="n" name="Hill coefficient" value="3"/>
<Constant symbol="k_n" name="Actin nucleation rate" value="11"/>
<Constant symbol="k_s" name="Actin disassembly rate" value="2"/>
<Constant symbol="eta" name="basal GTPase decay rate" value="0.5"/>
<Constant symbol="s" name="actin-dependent GTPase decay rate" value="0.5"/>
<Constant symbol="F_0" name="actin set point" value="1"/>
<Constant symbol="epsilon" name="actin reaction rate" value="0.01"/>
<Constant symbol="Tot" name="Total mean GTPase conc" value="4"/>
<!--
For each variable, indicate that it satisfies a differential equation and
give the expression on the RHS of that ODE. The inactive GTPase is not
needed in the well-mixed system, so its ODE is commented out. It will be
needed once a PDE (spatially distributed) version of them odel is studied.
-->
<DiffEqn symbol-ref="a">
<!-- <Expression> (b+gamma*a^n/(1+a^n))*(Tot-a)- a*(eta+s*F_a/(F_0+F_a)) </Expression>
-->
<Expression> (b+gamma*a^n/(1+a^n))*(Tot-a)- a*(eta+s*F_a) </Expression>
</DiffEqn>
<DiffEqn symbol-ref="F_a">
<Expression> epsilon*(k_n*a-k_s*F_a)</Expression>
</DiffEqn>
</System>
</Global>
<!--
Define the spatial domain
-->
<Space>
<Lattice class="linear">
<Size symbol="size" value="1, 0, 0"/>
<Neighborhood>
<Order>1</Order>
</Neighborhood>
</Lattice>
<SpaceSymbol symbol="space"/>
</Space>
<!--
Set up the simulation StopTime
-->
<Time>
<StartTime value="0"/>
<StopTime symbol="stoptime" value="500"/>
<TimeSymbol symbol="time"/>
</Time>
<!--
Set up what is to be plotted and how
-->
<Analysis>
<Logger time-step="5">
<Input>
<Symbol symbol-ref="a"/>
<Symbol symbol-ref="F_a"/>
</Input>
<Plots>
<Plot time-step="-1">
<Style line-width="2.0" style="lines"/>
<Terminal terminal="png"/>
<X-axis>
<Symbol symbol-ref="time"/>
</X-axis>
<Y-axis>
<Symbol symbol-ref="a"/>
<Symbol symbol-ref="F_a"/>
</Y-axis>
</Plot>
</Plots>
<Output>
<TextOutput/>
</Output>
</Logger>
<ModelGraph format="dot" reduced="false" include-tags="#untagged"/>
</Analysis>
</MorpheusModel>
Downloads
Files associated with this model: